天生桥一级水电站为西电东送的重点工程,也是珠江流域西江水系上游的南盘江龙头电站,电站总装机容量为1200MW(4×300MW),电站于1998年底首台机组发电,至2000年工程竣工。
工程特征
溢洪道布置于右岸垭口处,其开挖料为大坝填筑的主要料源。溢洪道设计标准为千年一遇洪水(Q=20900m3/s)设计,可能最大洪水(Q=28500m3/s)校核。经水库调洪后,相应的下泄流量分别为14782m3/s和21750m3/s。泄洪孔口尺寸为宽13m,高20m,共5孔。
溢洪道全长1665m,由引渠、溢流堰、泄槽、挑流鼻坎和护岸工程组成。引渠长1122m,底宽120m,渠底高程745m,底坡i=0。渠道两侧为垂直边坡,每隔22m高设1条12m宽的马道,引渠基本不衬砌。溢流堰顶高程760m,设5孔宽13m高20m的弧形闸门,溢流前缘总长81m。堰后为泄槽,泄槽平面采用不对称收缩体型,横断面为矩形,纵坡i=13%。为避免气蚀破坏,在泄槽段共设5道掺气槽。泄槽轴线与下游河道的交角为50°~60°,且流速高,泄量大,泄洪功率达2800万kW。经水力模型试验研究,选用左槽正向扩散连续大挑角鼻坎和右槽窄缝曲面贴角斜鼻坎的结合方案,较好地解决了泄流消能问题。在工程建设过程中,对上述设计方案做了简化,取消了泄槽中隔墩;又经水力模型试验,选取了两侧扩散的舌形鼻坎方案,在出口河岸相应地做了保护。
引水发电系统
引水发电系统位于左岸砂泥岩地区。进水口设在左岸8号冲沟内,10号冲沟下游侧布置地面厂房,采用单机单管布置。
引水系统包括引渠、进水口、引水隧洞和压力钢管道。根据进水口的布置,傍山开挖形成引渠。引渠沿中心线长度为284m,梯形复式断面。其底板宽98m,高程710m。进水口采用岸边塔式,进水塔长98m,宽27.5m,高84m。设置2道直栅槽,内设16扇拦污栅,1扇检修门及4扇事故门。对外通过塔顶交通桥与左岸公路相连。引水隧洞4条,中心距24m,内径9.6m,纵坡7.5%~10%,水平投影长380.39~494.09m。结构设计采用一次支护和二次衬砌形式,局部过沟地段二次支护改用后张法预应力混凝土衬砌。压力钢管道4条,中心距23.1m,采用斜井布置,坡度50°,由上弯管、斜井管、下弯管和水平管组成。钢管内径7~8.2m,水平投影长158.78~172.19m,管壁厚22~30mm。
地面厂房
地面厂房位于左岸10号冲沟下游侧,顺河向布置。厂区后山坡临时边坡高达154m,永久边坡高达109m,并有断层和向背斜结构面,对边坡稳定有影响。为此做了大量边坡稳定分析,采取了边坡综合治理措施,并设置了监测系统。
主厂房长154.4m,宽26m,高67m。厂房内安装4台单机容量为300MW的水轮发电机组,其安装高程为633.5m。上游侧副厂房布置电气设备,下游侧副厂房布置水轮机设备,端头副厂房为中控室及计算机监控设备。主变压器布置在上游侧副厂房的上游,出线架位于上游副厂房屋顶上,4回220kV出线至换流站。
放空隧洞
放空隧洞位于右岸1号冲沟的下游侧,全长1062.17m,进口高程为660m,具有施工期参与后期导流、水库蓄水期向下游电站供水、运行期放空水库检修大坝面板等功能。距放空隧洞进口339.17m处设事故闸门并,并高131m,内径11.4m,内设6.8m×9m的事故平板链轮闸门;距进口560.67m处为工作闸门室,内设6.4m×7.5m的工作弧形闸门;工作闸门室之前为圆形有压隧洞,长557.67m。内径9.6m;其后为方圆形无压隧洞,长489.5m,宽8m,高11m;洞后接长约162m的出口明渠及挑流鼻坎。
事故闸门井以交通便桥与右坝头相接;工作闸门室以交通通风洞与场内公路相连。交通通风洞布置在放空洞的左侧,为双层结构,上层交通,下层通风。
大坝安全监测
变形监测 3.1.1内部变形监测
变形监测
(l)观测点布置大坝布置有3个观测断面,0 630断面为河床中部最大断面,右岸0十438断面在1/2坝高处,左岸0十918断面位于地形突变部位。在观测断面的665、692、725、758m高程,共布置有沉降测点50个,水平位移测点31个。
(2)观测仪器坝体内部垂直位移观测采用水管式沉降仪,水平位移观测采用引张线式水平位移计。天生桥大坝安装的垂直、水平位移计管线最大长度达350m,堪称世界第一。
3.1.2面板挠度监测
面板挠度观测通常采用埋设测斜仪导管的方法,用活动式测斜仪观测导管的挠度变形。大坝面板坡长305m,如采用活动式测斜仪则存在以下问题:测绳太长可能产生测头下放困难;采用测头下放的辅助牵引装置,又耽心辅助牵引装置一旦发生故障,很难检修;观测耗费时间很长,也难以实现观测的自动化等。承建单位的巴西专家,根据辛戈坝的经验,建议采用电平器进行面板挠度观测,经参建各方认真研究,这一建议得到了采纳。电平器是一种固定式测斜仪,观测精度高,根据电平器观测的测点倾角变化可计算面板的挠度曲线。天生桥大坝3个观测断面的面板上游共布置64个电平器来观测面板挠度变形。
3.1.3接缝监测
(1)周边缝沿周边缝布置有12组三向测缝计,观测缝面开度、沉降和切向位移相对变化。
(2)垂直缝在面板垂直伸缩缝的张性缝区、张性缝和压性缝过渡区,跨缝布置单向测缝计24支,用来观测缝面开合变化。
(3)面板脱空观测大坝一期面板浇筑后,检查发现面板顶部与垫层料间有大面积脱空,决定在二期面板布置2组二向测缝计,观测面板和垫层料接触缝面的法向和切向变形;在三期面板布置7组观测面板脱空变形的二向测缝计。
3.1.4表面变形监测
在坝体上、下游坝面和坝顶,共布置视准线8条,其中布置在一、二期面板顶部的视准线为施工期临时测线,水平位移观测采用视准线法,垂直位移用水准仪观测。
渗流监测 3.2.1渗流压力监测
渗流监测
(1)坝体渗流压力在距趾板“X”线下游3m的垫层料区基础面,布置有坑埋式渗压计13支,用来观测周边缝后坝体的渗压。
(2)坝基渗流压力在趾板灌浆帷幕前后,布置有钻孔式渗压计21支,观测坝基渗压,了解帷幕阻渗效果。
(3)绕坝渗流水位在左、右岸坝肩,共布置16个钻孔测压管观测绕坝渗流水位。
3.2.2渗流量监测
大坝下游布置了1个渗流汇集系统。在下游坝脚设置1道截水墙,拦截坝体渗水,使渗流汇集,通过布置在右岸的引渠流向下游,在引渠设置量水堰观测坝体渗流。在右岸坝肩排水系统的2个洞口布置了观测坝肩渗流量的量水堰。
压力、应力和温度监测 3.3.1压力监测
压力应力温度
大坝0十630断面4个不同高程的面板与垫层料接触面,布置有观测接触土压力的土压力计;在坝体过渡料中部和坝轴线处,布置有观测平面应力变化的土压力计。大坝共布置土压力计28支。
3.3.2混凝土面板应力和温度监测
大坝面板布置了应力应变观测剖面6个,温度观测剖面4个,有应变计84支、无应力计15支、钢筋计55支、温度计27支,共计181支仪器,用来观测面板的应力、应变和温度变化。
3.4地震反应监测
大坝设置了遥测微震台网,记录坝区和库区地震情况;在坝体和基岩布置强震仪监测坝体的地震反应。
运行概况
1998年8月天生桥一级电站水库正式蓄水,同年最高水位达740.36m,发生时间为1998年11月8日,1998年12月一级电站首4#机组投产发电,此时大坝已完成堆石体填筑(787.3m)及三期面板浇筑,下游坝体经济断面于12月填筑到787.3m高程。
1999年水库最高水位767.19m,为99年9月1日,大坝进行防浪墙及坝体787.3m~791.0m高程施工,99年12月3#机投入运行。
2000年水库蓄水至正常水位780.0m运行(10月17日),年底大坝施工全部完成,2000年9月2#机投入运行,12月1#机投入运行,至此四台机组全部投入运行。
2001年水库蓄水至正常水位780.0m运行(11月11日),2002年水库蓄水至776.96m运行(9月17日)。
运行特点
(1)天生桥一级水电站为南盘江龙头电站,库容大,大坝为世界第二、亚州第一高的面板堆石坝,大坝的安全将对下游已建电站(天生桥二级、岩滩、大化)和在建电站(平班、龙滩)及沿岸国家和人民生命财产关系重大,若出现意外,将是灾难性的,损失难以估量,所以必须保证大坝的安全运行。
(2)一级电站下游6.5km为天生桥二级水电站首部枢纽。二级电站为迳流式电站,水库有效库容仅为800万m3,无调节性能。二级电站溢流坝闸门为平板门,单宽流量小,一级电站溢洪道闸门为弧形门,单宽流量大,所以天生桥一、二级电站的联合渡汛将十分重要。一、二级电站泄洪时要密切配合,一级电站每开一扇闸门要等二级电站达到相近的泄流量,稳定安全运行的水位,一级电站才能开一下扇闸门,以此类推。当泄流量较大时,闸门操作时间较长,并且整个闸门操作过程一、二级要配合好,不能出现调度、联系、操作等每个环节的错误,否则将对二级电站的安全带来较大影响。
(3)一级电站大坝的安全运行,关键在面板、面板与趾板之间的周边缝的工作状态。现代混凝土面板堆石坝设计的原则之一是,面板的应力状态直接和堆石坝体变形有关,和水压力关系不明显。意味着面板主要承受它和堆石坝体之间的位移差引起的荷载,不主要承受水压力。面板状态取决于堆石坝体的变形状态。面板主要是传递水压力给大坝堆石体,由于面板是钢筋混凝土,属刚性体,受大坝变形影响,面板将产生裂缝,同时面板与大坝垫层料产生脱空,也将使面板产生裂缝,需及时做出修补,否则将影响大坝的安全运行。
(4)溢洪道是天生桥一级水电站唯一的泄洪设施,它的安全运行关系到大坝的安全,同时对下游已建工程及沿河国家及人民财产影响重大,所以对溢洪道机电设备及金属结构的检查、维护极为重要,必须确保每次闸门操作能正常进行。
(5)天生桥一级电站水库库容大,对下游已建电站的经济效益显著,可增加已建电站(天生桥二级、岩滩、大化)的保证出力88.39万kW,增加年发电量40.77亿kW.h,相当于新建一座百万千瓦级的水电站。一级电站每年汛未的水库蓄水对电站群的经济效益至关重要,设计文件规定,一级电站水库汛限水位为773.1m,在9月10日后才能蓄至正常水位780.0m运行,由于南盘江流域主汛期为每年6~8月,对水库蓄水带来不利影响,如果出现主汛期来水集中,后汛期(9~10月)来水较少,就可能出现水库不能蓄水至正常水位780.0m运行,所以应对汛限水位773.1m进行调整提高或对可蓄至正常水位的时间(9月10日)调整,可以考虑对汛限水位进行动态管理,在满足电站安全运行的前提下,可适时根据每年来水情况进行调整,有利水库蓄水。
(6)天生桥一级电站放空洞作为在施工期参加导流,运行期作为电站旁通和放空水库用的特点,放空洞的安全运行较重要。由于放空洞工作闸门属于地下洞室,有渗水,空气流动性差,较潮湿,闸门控制设备容易受潮,不能保证正常工作,需作防水、通风处理,由于大坝是目前运行最高的面板堆石坝,如果大坝出现险情,必须保证放空洞能及时运行,开闸放水降低库水位,所以放空洞的闸门操作系统要维护好,以保证随时能投入运行。
(7)引水系统跨左岸10#冲沟,由于隧洞在冲沟部位为中厚层泥岩和砂岩互层,局部上覆岩体较薄,最薄处只有21.4m,在该段的隧洞采用后张控预应力锚索技术,隧洞投入运行测压管水位在蓄水后有明显升高,宜控制渗压防止发生水力劈裂,2000年在10#冲沟隧洞上履岩进行灌浆处理,以提高围岩的弹性模量。经过灌浆围岩弹性模量得到明显提高。同时利用68#地质探洞(在10#冲沟上游侧)补打排水孔,降低岩体渗透压力,经过观测,测压管水位得到降低,有效防止水力劈裂的产生,提高了隧洞的安全运行。