因式分解

#公式# 0 0
因式分解又称多项式分解因式,它是指把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式。由于它是恒等变形的基础,它被广泛地应用于初等数学之中,在分式、二次根式、二次方程、二次不等式、二次函数、无理方程、分式方程甚至几何中都要用到因式分解,是解决许多数学问题的有力工具。
详细介绍 PROFILE +

把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式。

基本概念

定义

把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用,是解决许多数学问题的有力工具。

因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高综合分析和解决问题的能力。

相关结论

基本结论:分解因式为整式乘法的逆过程。

高级结论:在高等代数上,因式分解有一些重要结论,在初等代数层面上证明很困难,但是理解很容易。

(1)因式分解与解高次方程有密切的关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂,在非专业领域没有介绍。对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。

(2)所有的三次和三次以上的一元多项式在实数范围内都可以因式分解,所有的二次或二次以上的一元多项式在复数范围内都可以因式分解。这看起来或许有点不可思议。比如x⁴ 1,这是一个一元四次多项式,看起来似乎不能因式分解。但是它的次数高于3,所以一定可以因式分解。也可以用待定系数法将其分解,只是分解出来的式子并不整洁。(这是因为,由代数基本定理可知n次一元多项式总是有n个根,也就是说,n次一元多项式总是可以分解为n个一次因式的乘积。并且还有一条定理:实系数多项式的虚数根两两共轭的,将每对共轭的虚数根对应的一次因式相乘,可以得到二次的实系数因式,从而这条结论也就成立了。)

(3)因式分解虽然没有固定方法,但是求两个多项式的公因式却有固定方法。因式分解很多时候就是用来提公因式的。寻找公因式可以用辗转相除法来求得。标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以但比较笨,不过能有效地解决找公因式的问题。

(4)因式分解是很困难的,初中所接触的只是因式分解很简单的一部分。

分解一般步骤

1、如果多项式的首项为负,应先提取负号;

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。

2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;

要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。

3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。

口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。

原则

1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。

2、分解因式的结果必须是以乘积的形式表示。

3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。

4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;

5、结果的多项式首项一般为正。在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;

6、括号内的首项系数一般为正;

7、如有单项式和多项式相乘,应把单项式提到多项式前。如(b c)a要写成a(b c);

8、考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。

口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。

分解方法

因式分解主要有十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法等方法,求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。

提公因式法

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

各项都含有的公共的因式叫做这个多项式各项的公因式。公因式可以是单项式,也可以是多项式。

具体方法:在确定公因式前,应从系数和因式两个方面考虑。当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项为负,要提出负号,使括号内的第一项的系数成为正数。提出负号时,多项式的各项都要变号。

基本步骤:

(1)找出公因式;

(2)提公因式并确定另一个因式;

①找公因式可按照确定公因式的方法先确定系数再确定字母;

②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;

③提完公因式后,另一因式的项数与原多项式的项数相同。

口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。

公式法

如果把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法。

分解公式:

1、平方差公式:

即两个数的平方差,等于这两个数的和与这两个数的差的积。

2、完全平方公式:

即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。

注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

口诀:首平方,尾平方,积的二倍放中央。同号加、异号减,符号添在异号前。

推广:

(1)即三数和的平方,等于这三个数的平方和加上每两项的积的2倍。

(2)即四数和的平方,等于这四个数的平方和加上每两数的积的2倍。

即几个数的和的平方,等于这几个数的平方和加上每两数的积的2倍。

3、立方和公式:

即两数之和,乘它们的平方和与它们的积的差,等于这两个数的立方和。

推广:三项立方和公式:

即三数之和,乘它们的平方和与它们两两的积的差,等于这三个数的立方和减三数之积的三倍

变形:

4、立方差公式:

即两数之差,乘它们的平方和与它们的积的和,等于这两个数的立方差。

变形:

5、完全立方公式:

即两数之和(差)的立方等于这两个数的立方和(差)与每一个数的平方乘以另一个数3倍的和(和与差)。

十字相乘法

对于型的式子如果能分解为数的积,且有时(即a与b和是一次项的系数),那么;或对于型的式子如果有,,且有时,那么。这种分解因式的方法叫做十字相乘法。

注:与十字相乘法对应的还有双十字相乘法

具体方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。

口诀:分二次项,分常数项,交叉相乘求和得一次项。(拆两头,凑中间)

特点:

(1)二次项系数是1;

(2)常数项是两个数的乘积;

(3)一次项系数是常数项的两因数的和。

基本步骤:

(1)把二次项系数和常数项分别分解因数;

(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;

(3)确定合适的十字图并写出因式分解的结果;

(4)检验。

双十字相乘法

对于某些二元二次六项式(x、y为未知数,其余都是常数),用两次十字相乘法分解因式,这种分解因式的方法叫做双十字相乘法。

步骤:

(1)用十字相乘法分解二次项(),得到一个十字相乘图(有两列);

(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.

(3)先以一个字母的一次系数分数常数项;

(4)再按另一个字母的一次系数进行检验;

(5)横向相加,纵向相乘。

例:分解因式:x² 5xy 6y² 8x 18y 12.

解析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。

解:

x2y2

x3y6

∴原式=(x 2y 2)(x 3y 6)

轮换对称法

当题目为一个轮换对称式时,可用轮换对称法进行分解。

步骤:

(1)试根

把下列5个等式分别带入原式,找出令原式等于0的那个等式。

1、x=0

2、x=y

3、x=-y

4、x=y z

5、x=-y-z

(2)轮换

1、若x=0使原式=0 原式必有因式xyz

2、若x=y使原式=0 原式必有因式(x-y)(y-z)(z-x)

3、若x=-y使原式=0 原式必有因式(x y)(y z)(z x)

4、若x=y z使原式=0 原式必有因式(x-y-z)(y-z-x)(z-x-y)

5、若x=-y-z使原式=0 原式必有因式(x y z)

(3)对比次数

用原式的次数减去必有因式的次数,然后再乘上差的次数的对应的式子。(差几次添几次)

须添上的轮换对称式:

1次:x y z

2次:x² y² z²、xy yz zx

3次:x³ y³ z³、x²y y²z z²x、xy² yz² zx²、xyz

(4)根据次数待定系数

在需要乘上的式子前加上字母,待定系数。

(5)算出待定的系数

用特值法及恒等式性质算出待定的系数。

(6)得出答案

进行检验,写出答案。

例:分解因式:x²(y-z)³ y²(z-x)³ z²(x-y)³

解:x=y 原式=0

必有因式(x-y)(y-z)(z-x)

原式为五次式,(x-y)(y-z)(z-x)为三次式,则需要补上二次式

设补上a(x² y² z²) b(xy yz zx)

原式=(x-y)(y-z)(z-x)[a(x² y² z²) b(xy yz zx)]

特值法:

令x=1 y=2 z=3

x²(y-z)³ y²(z-x)³ z²(x-y)³=(x-y)(y-z)(z-x)[a(x² y² z²) b(xy yz zx)]

-1 32-9=(-1)·(-1)·2·(14a 11b)

22=28a 22b

14a 11b=11

令x=3 y=2 z=4

x²(y-z)³ y²(z-x)³ z²(x-y)³=(x-y)(y-z)(z-x)[a(x² y² z²) b(xy yz zx)]

-72 4 16=1·(-2)·1·(29a 26b)

-52=-58a-52b

29a 26b=26

解得a=0

b=1

原式=(x-y)(y-z)(z-x)(xy yz zx)

分组分解法

通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,这种分解因式的方法叫做分组分解法。能分组分解的多项式有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。

例1:因式分解ax ay bx by

解析:把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。

解:ax ay bx by

=a(x y) b(x y)

=(a b)(x y)

ax ay bx by

=x(a b) y(a b)

=(a b)(x y)

例2:因式分解5ax 5bx 3ay 3by

解析:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。

解:5ax 5bx 3ay 3by

=5x(a b) 3y(a b)

=(5x 3y)(a b)

例3:因式分解x²-x-y²-y

解析:利用二二分法,再利用公式法a²-b²=(a b)(a-b),然后相合解决。

解:x²-x-y²-y

=(x²-y²)-(x y)

=(x y)(x-y)-(x y)

=(x y)(x-y-1)

例4:因式分解a²-b²-2bc-c²

解:a²-b²-2bc-c²

=a²-(b c)²

=(a-b-c)(a b c)

拆添项法

把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解,这种分解因式的方法叫作拆添项法。要注意,必须在与原多项式相等的原则下进行变形。

例:分解因式:x³-9x 8.

分析:本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

解法1:将常数项8拆成-1 9.

原式=x³-9x-1 9

=(x³-1)-9x 9

=(x-1)(x² x 1)-9(x-1)

=(x-1)(x² x-8)

解法2将一次项-9x拆成-x-8x.

原式=x³-x-8x 8

=(x³-x) (-8x 8)

=x(x 1)(x-1)-8(x-1)

=(x-1)(x² x-8)

解法3将三次项x³拆成9x³-8x³.

原式=9x³-8x³-9x 8

=(9x³-9x) (-8x³ 8)

=9x(x 1)(x-1)-8(x-1)(x² x 1)

=(x-1)(x² x-8)

解法4 添加两项-x² x².

原式=x³-9x 8

=x³-x² x²-9x 8

=x²(x-1) (x-8)(x-1)

=(x-1)(x² x-8)

配方法

对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种分解因式的方法叫做配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。

例:分解因式x² 3x-40

解:x² 3x-40

=x² 3x 2.25-42.25

=(x 1.5)²-(6.5)²

=(x 8)(x-5).

主元法

在分解含多个字母的代数式时,选取其中一个字母为主元(未知数),将其它字母看成是常数,把代数式整理成关于主元的降幂排列(或升幂排列)的多项式,再尝试用公式法、配方法、分组分解法等分解因式的方法进行分解。这种分解因式的方法叫做主元法。

特殊值法

将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。这种分解因式的方法叫做特殊值法。

待定系数法

在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数。由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法。

本百科词条由网站注册用户【 CN106459 】编辑上传提供,当前页面所展示的词条介绍涉及宣传内容属于注册用户个人编辑行为,网站不完全保证内容信息的准确性、真实性,也不代表本站立场。 版权声明 反馈 我要认领
词条所在榜单
相关知识文章
初中数学十大必背公式 初中数学公式大全 初一到初三数学公式归纳
初中数学是初中阶段一门很重要的学科,主要包括数与式、几何、函数与方程、概率统计等方面的内容,并要求学生熟练掌握一些重要的数学公式。那么你知道初中必背的数学公式有哪些吗?初中考试中常见的数学公式又有哪些呢?本文就为大家整理了一份初中数学十大必背公式,包括分式运算公式、勾股定理公式、方差和标准差公式、二次函数公式、一元二次方程公式、三角函数公式等,一起随MAIgoo小编来详细了解下吧。
高中数学十大必背公式 高中重点数学公式大全 高中数学公式汇总
高中数学是高中阶段一门很重要的学科,主要包括集合与函数、三角函数、不等式、数列等方面的内容,并要求学生熟练掌握一些重要的数学公式。那么你知道高中必背的数学公式有哪些吗?高中考试中常见的数学公式又有哪些呢?本文就为大家整理了一份高中数学十大必背公式,包括集合公式、初等函数公式、三角函数公式、三角恒等变换公式、数列公式、因式分解公式等,一起随MAIgoo小编来详细了解下吧。
影响世界的十大公式 最伟大的公式排名 世界著名公式大全
公式是一门学科智慧的结晶,也代表着这门学科的发展程度。有的公式影响了社会的发展,塑造了人类的思想。本文中maiGOO小编就带大家看一份影响世界的十大公式名单,其中有薛定谔方程、1+1=2、勾股定理、质能方程,以及傅立叶变换、欧拉公式、牛顿第二定律、麦克斯韦方程组等最著名的数学公式。一起来详细了解下。
高中物理十大必背公式 高考物理常用公式 高中物理公式大全
高中物理是高中阶段的一门重要学科,主要介绍了物理学的基础知识和一些基本概念,并要求学生熟练掌握一些重要的物理公式。那么你知道高中必背物理公式有哪些吗?高考物理常用公式又有哪些呢?本文就为大家整理了一份高中物理十大必背公式,包括:匀变速直线运动公式、加速度公式、动力学定理定律公式、常见的力公式、热学公式、电场公式等,一起随MAIgoo小编来详细了解下吧。
初中物理十大必背公式 中考物理常用公式 初中物理公式大全
初中物理是初中阶段的一门重要学科,主要介绍了物理学的基础知识,并要求学生熟练掌握一些重要的物理公式。那么你知道初中必背物理公式有哪些吗?中考物理常用公式又有哪些呢?本文就为大家整理了一份初中物理十大必背公式,包括:速度公式、欧姆定律公式、密度公式、压强公式、重力公式、浮力公式等,一起随MAIgoo小编来详细了解下吧。
鸡兔同笼应用题100道带答案 鸡兔同笼经典例题及简单解法
鸡兔同笼是中国古代的数学名题之一,大约在1500年前,《孙子算经》中就记载了这个有趣的问题,许多小学算术应用题都可以转化成这类问题,今天本文就为大家整理了鸡兔同笼应用题100道,一起来看看吧。
100道有趣又烧脑的数学题 经典烧脑的数学智力题带答案
在各种学科中,数学的位置无可替代,对于人的逻辑思维能力、想象能力、理解问题能力、细心程度等等是项全方位的考验,一些有趣的数学问题更是对智商高低的印证,本文就为大家带来了100道有趣又烧脑的数学题,看看你能答对几个吧。
五年级奥数思维训练题100道 五年级数学竞赛100题及答案
五年级对于小学来说是非常重要的时期,知识的难度提高了一个层次,许多内容甚至是初中知识的根基,而奥数的学习不仅能使学生的思维更加灵活,还能对巩固原本学识的知识,本文就为大家带来了五年级奥数思维训练题100道,希望对您有所帮助。
六年级奥数思维训练题100道 六年级数学竞赛100题及答案
六年级已经完成了小学的全部学习,而奥数的学习则可以让学生开拓思维,从而更容易接受初中知识,一些小学奥数题甚至可以难倒许多初中学生甚至家长,本文就为大家带来了六年级奥数思维训练题100道,你全都会做吗?
初中奥数题100道及答案 初中奥数训练题大全 初中数学竞赛100题
说到奥数题,大家一般想到的都是小学奥数,其实如果在小学阶段的学习成果足够优秀的话,初中的奥数学习更会使学生更加充满乐趣和收获,甚至走上更高的舞台,本文就为大家整理了初中奥数题100道及答案,希望对您有所帮助。
四年级奥数思维训练题100道 四年级数学竞赛100题及答案
四年级是小学学习的关键时期,对于很多学生来说甚至是一生的分水岭,而奥数的学习不仅能开拓学生的思维,还能使原本的学习内容得到巩固,本文就为大家整理了四年级奥数思维训练题100道,希望对您有所帮助。
三年级奥数思维训练题100道 三年级数学竞赛100题及答案
小学三年级是打基础的关键时期,而这一时期学习奥数无疑可以帮助孩子拓展思维,并且更好地消化原本的学习内容,本文就为大家整理了三年级奥数思维训练题100道,希望对您有所帮助。
100道简便计算题及答案 简便运算练习题大全 数学简便运算100题
在数的运算中,有加(+)、减(-)、乘(×)、除(÷)四种运算,我们在数学上又为了能更简便计算它们,简称称作简算,也是小学数学计算题中最常见的一种,本文就为大家整理了100道简便计算题及答案,希望对您有所帮助。
初二数学必练100题 初二数学题库大全 八年级计算题100道及答案
初二是初中学习的重要阶段,尤其是初二的数学是关键的承上启下时期,很多曾经成绩不错的同学都是在初二落下,所以大量的练习至关重要,本文就为大家整理了初二数学必练100题,希望对您有所帮助。
初一数学必练100题及答案 七年级计算题大全 初一数学几何题100道
初中的学习,尤其是初中数学,是数学学科一个新的开始,小学阶段的学习内容在这时才刚开始发挥用处,同样的,初一也是初中的打基础阶段,需要大量的练习加以巩固,本文就为大家整理了初一数学必练100题及答案,希望对您有所帮助。
奥数行程问题100道 行程问题经典题型 行程应用题100题及答案
行程问题是小学奥数中的一大基本问题。行程问题有相遇问题、追及问题等近十种,是问题类型较多的题型之一,包含多人行程、二次相遇、多次相遇、火车过桥、流水行船、环形跑道、钟面行程、走走停停、接送问题等。本文就为大家整理了奥数行程问题100道,希望对您有所帮助。
100道脱式计算题及答案 脱式计算练习题大全 数学脱式计算100题
脱式计算即递等式计算,把计算过程完整写出来的运算,也就是脱离竖式的计算。需要主要掌握的是记住要先算乘、除法,后算加、减法。在乘除法连继计算时中,要按从左往右的顺序依次计算,遇到括号,要首先计算括号内部。本文就为大家整理了100道脱式计算题及答案,希望对您有所帮助。
三年级数学应用题100道 数学三年级应用题及答案
三年级对于小学来说是非常重要的时期,在这个承上启下的关键阶段不仅需要吸收新的学习内容而且同时需要大量的练习来巩固所学的知识,今天本文就为大家整理了三年级数学应用题100道,希望对您有所帮助。
奥数思维训练100题及答案 奥数经典题型大全 小学经典奥数题100道
在小学学习阶段,奥数不仅可以开拓学生的思维还可以起到巩固课本知识的作用,并且使学生见到数学的魅力从而产生更浓厚的兴趣,本文就为大家整理了奥数思维训练100题及答案,希望对您有所帮助。
四年级数学必练100题 四年级应用题大全 四年级简便计算题100道
四年级是小学学习阶段非常重要的时期,这一年级所学的知识是接下来一切内容的基础,从计算题到应用题都开始增加了难度,是学生学习能力的重要打磨阶段,本文就为大家带来了四年级数学必练100题,希望对您有所帮助。