松浦大桥,也是哈尔滨市自行组织建设的第一座跨江大型桥梁工程。
该桥南起松花江南岸道外区南新街,北至松花江北岸永胜路,毗邻黑龙江科技大学,路线全长4.027公里,由南引桥工程、跨江大桥工程和北引桥工程三部分组成。其中主桥采用钻石型独塔双索面斜拉桥,结构为半漂浮结构体系,主塔高160米,主桥长476米(其中主跨268米,边跨208米,跨度位列我国大跨度独塔斜拉桥第八位),采用钢-钢筋砼叠合梁结构;引桥长度3450米,采用钢筋砼连续梁结构。主桥桥宽39.5米,双向八车道,设计车速80km/h,最大可满足高峰小时9800辆通行能力,跨江大桥两侧各设2米宽的人行道。桥梁设计荷载采用城市A级,桥下净空不小于10米,可满足松花江三级航道通行需要。
2011年11月7日,在北京人民大会堂揭晓的国家建设工程质量最高奖-----鲁班奖的奖项目中,哈尔滨松浦大桥工程获此殊荣。
该桥梁是哈尔滨市建桥史上工程规模大、工艺和科技含量高、综合建设条件复杂的特大型桥梁工程,在国际上亦属特大型桥梁工程。该桥建成后,极大缓解了原来只有松花江公路大桥一桥承载两岸交通的压力,提高南北城区大交通联网组织能力,对推动哈尔滨市“两岸繁荣”战略的实施具有重要意义。同时大桥通至松北后将与哈大、哈依、哈绥公路紧密相连,构成江北地区重要的对外集散通道,为完善黑龙江省公路交通路网格局发挥重要作用,并有力地促进松浦镇的发展。松浦大桥通车后,松花江两岸居民乘车过江时间将由原来的90分钟大大缩短,时速80公里,5分钟即可过江。作为飞架松花江南北两岸的哈尔滨“龙骨”,松浦大桥的通车使松花江两岸变通途,拓展了城市空间,对构建哈尔滨公交线路的跨江连接新通道,打造哈尔滨“半小时生活圈”具有里程碑式的意义。
松浦大桥是由江中主塔斜拉叠合梁、滩岛移动模架连续梁和北汊悬浇变截面连续梁等多种结构形式组成的超大型跨江大桥,也是位于严寒地区的哈尔滨市首次自行组织建设的大桥。为搞好大桥建设,工程技术人员将在工程建设中采用多项新技术并开展课题研究。
1、自平衡法工程桩承载力检测技术
在松浦大桥工程桩中首次采用自平衡法进行大孔径工程单桩承载力试验,该方法既节省试验费用,又不占用场地,试验桩可做工程桩使用,该项试验对指导哈尔滨市今后大孔径灌注桩工程桩基检测具有突出的作用。
2、大口径大承载力桩基极限承载力静载试验技术
在松浦大桥南引桥采用静载法对大口径大承载力桩基进行极限承载力试验,这是哈尔滨市工程界首次进行的试验项目,其试验结果对指导哈尔滨市沿江地区工程建设采用大口径大承载力桩基具有较普遍的指导意义。
3、大孔径变截面超长桩技术
大桥的主塔基础采用了大孔径变截面超长桩,桩长95米,上桩径2.5米,下桩径2米。既满足冰体撞力、水流推力和桩身强度要求,又可节约工程造价,提高基础承载力。
4、大体积砼施工水化热的控制技术
在主塔承台施工中,砼达6000立方米,采取合理调整砼配合比、掺外加剂和冷却管等方法控制大体积砼水化热,确保砼的浇筑质量。
5、160米高钻石型主塔柱的爬模施工技术
该技术的难点在于,在东北地区首次采用变截面空箱斜向爬模连续节段施工技术。
6、高寒地区大跨度钢砼叠合梁技术
在我国高寒地区钢砼叠合梁的制造、安装和使用中,两种材料能否共同工作是一难题,采用高标号砼、合理的钢梁焊接技术和构造措施,确保砼板与钢梁的可靠连接,使其具有能够适应哈尔滨市高寒期的工作机理要求。
7、移动模架施工技术
松浦大桥是东北地区首次使用移动模架造桥施工技术,该技术的采用可解决江中滩岛软弱地基易沉陷对上部连续梁施工的不利影响和避免汛期对工程施工的影响。
8、斜拉桥抗风性能的研究
为保证斜拉桥颤振稳定,防止发生涡激共振,组织课题开展试验研究,确保大桥在施工过程中和建成运营后的抗风稳定性、安全性和适用性。
9、结构抗震性能分析
鉴于近年来地震灾害对桥梁的影响,对该桥进行结构抗震设防标准、结构地震反应分析、减隔震优化设计及合理的抗震构造措施等方面进行系统的研究,为结构设计提供安全性、经济性、合理性的科研参数支持。
10、施工监控研究
通过分析和计算主桥大跨度系统在施工安装的不同阶段各部位的受力状态和变形情况,提出梁和拉索之间的对应关系,以指导设计与施工安装控制。
松浦大桥·合龙深秋凌晨斜拉索合龙
松浦大桥为斜拉桥,钢缆索的安装也很有“讲究”。因为钢索会受温度、光照等多方面因素的影响,而哈尔滨市四季气温温差又很大,大约有70度的温差,因此,在斜拉索合龙,即安装最后一根钢缆索时,需该选择温度在摄氏零上七八度的时间,也就是哈尔滨市深秋季节,这时钢索受温度影响小,为了避开阳光的照射,安装时间则选在凌晨两三点钟。因为事先都要经过严格而精确的计算,安装时间也就两三个小时。
松浦大桥·安全极端大风中照常通车
虽然哈尔滨市不是经常刮大风的地区,但大桥在建设时,也考虑了抗极端大风的承受力。此前,有关部门曾做过抗风试验,结果显示,钻石形独塔斜拉桥要比门式塔桥抗风力更好。松浦大桥即使在极端风速下也毫无问题,保证桥梁稳定。
这么高的桥肯定会“晃”,这是正常的,但晃动过大也不安全,有时重载汽车通过大桥,也会对大桥产生影响。相比较而言,松浦大桥的设计要比国内其他斜拉桥的晃动小得多。为了减少晃动,在斜拉钢缆索的两端还要加装阻尼器,以减小震动对大桥的影响,人在桥上不会有任何晃动的感觉。
松浦大桥·环保大桥建设环保“先行”
专家介绍说,大桥设计之初就通过了国家有关部门的环评。大桥在建设过程中也充分考虑了对环境的影响。跨江大桥钻孔灌注桩时,会使用到化学泥浆。这些化学泥浆都呈强碱性,也是所有桥梁工程建设中较大的污染源,一旦进入外泄,会对江水水质和水下生物造成破坏。因此,建设部门专门对此进行研究,将废弃的泥浆全部用专用回收船运走,以保证大桥建设对环境不造成任何破坏。
松浦大桥·主塔船只冰凌不会伤主塔
专家说,在大桥设计时已充分考虑到松花江上的船只和冰凌等意外因素。支撑大桥主塔的承台高程为116米,一般情况下承台会高出水面,船只的驾驶员会清楚地看到并避开承台,即使真的撞上了,也只是撞在承台上,不会对主塔和浇筑桩造成任何影响。而承台外围要加装钢板保护,并采取了其他防撞措施,确保了大桥的绝对安全。因为采用了大跨度的设计,整个江面上除主塔外仅有两个桥桩,这样不仅减小的桥墩被撞的危险,对防洪也非常有好处。
松浦大桥·数字
·160米高主塔倾斜度不能超过3厘米
松浦大桥的主塔塔高为160米,按每层3米计算有50多层楼高,超过哈市除龙塔外的其他建筑。主塔分3大段,下塔段18米,是支撑大桥的;中塔段87米,向内收缩;上塔段55米,是固定钢缆索的。斜拉桥的特有结构,决定了塔身建设的精度要求近乎苛刻,如何保证主塔垂直树立不发生倾斜是大桥稳定的关键环节。按着有关规定,主塔倾斜允许的误差不能超过塔高的1/3000或3厘米。
·25根近百米长浇筑桩支撑重量10万吨
松浦大桥是由25根深入地下95米的浇筑桩支撑起的承台,承台上建设主塔。因此,整个大桥的重量全靠25根浇筑桩来支撑。这25根水中大口径变截面超长型浇筑桩为上粗下细形状,下端的直径为2米,上端直径为2.5米,每根浇筑桩大约要用400立方米的混凝土,一根的重量就达960吨。而每根浇筑桩可以支撑3750吨的重量,25根则可以支撑仅近10万吨的总重量。水下基础施工看不见摸不着,规定允许的误差仅为1%,打下25根浇筑桩的难度可见一斑。
·承载大桥主塔的巨大承台总重1.5万吨
大顶子山水库蓄水后,松花江的江面将达到116米高程,江底高程为110米,25根浇筑桩几乎全部打进江底以下,25根桩上是一个长60.218米(精确到了毫米,可见其施工精度)、宽19米、高7米的椭圆形承台,这大约比两个篮球场还要大一些的巨大的实心混凝土有6000立方米,重量近1.5万吨,大桥的主塔就建在这个承台之上。松浦大桥设计为钻石形独塔斜拉桥一共有108根斜拉钢索,最长的288米,最短的86米。