旋转磁场

#特斯拉发明# 0 0
旋转磁场,磁感应矢量在空间以固定频率旋转的一种磁场;是电能和转动机械能之间相互转换的基本条件。因其沿定、转子铁心圆柱面不断旋转而得名。它一种大小不变,而以一定转速在空间旋转的磁场,有圆旋转磁场和椭圆旋转磁场之分。旋转磁场可以由多相(两相或多相)电流或单相电流产生,前提是在后一种情况下,提供两个励磁绕组,并且设计成两个产生的磁场由此产生的场是异相的。旋转磁场是特斯拉发明的,现在被广泛应用于交流电机、测量仪表等装置中。
详细介绍 PROFILE +

概念解释

旋转磁场是一种大小不变,而以一定转速在空间旋转的磁场。在对称三相绕组中流过对称三相电流时会产生一种旋转磁场,该磁场随电流交变而在空间不断地旋转着。

交流电机气隙中的磁场。因其沿定、转子铁心圆柱面不断旋转而得名。旋转磁场是电能和转动机械能之间互相转换的基本条件。

通常三相交流电机的定子都有对称的三相绕组(见电枢绕组)。任意一相绕组通以交流电流时产生的是脉振磁场。但若以平衡三相电流通入三相对称绕组,就会产生一个在空间旋转的磁场。磁场的对称轴线φ随时间而转动,其转速ns由电流频率f和磁极对数P决定 ns称为同步转速或同步速(以转每分表示)。中国应用的工业电源的频率f为50赫,于是两极电机(P=1)的ns=3000转/分;四极电机(P=2)的ns=1500转/分;余类推。

在一般情况下,电流变化一个周期,磁场轴线在空间就转过一对极。

若近似地认为磁场沿圆周作正弦形分布,并用磁场轴线处的空间矢量Ø来代表,用矢量长度表示磁场振幅,则理论分析证明,三相对称绕组通以平衡的三相电流时,产生的是一个振幅不变的旋转磁场。这时矢量Ø在旋转过程中它的末端轨迹为一圆形,故名圆形旋转磁场。这个结论可以推广到一般的多相(包括两相)系统。即多相电机对称绕组通以平衡多相交流电流,则产生圆形旋转磁场。

一般说来,旋转磁场的转向总是从电流超前的相移向电流滞后的相。如果将三相的3个引出线任意两个对调再接向电源,即通入三相绕组的电流相序相反,则旋转磁场的转向也跟着相反。

如果三相电流不平衡,可用对称分量法把三相电流系统分解为正序电流系统和负序电流系统。正序电流系统产生一个正向圆形旋转磁场,负序电流系统产生一个反向圆形旋转磁场。一般情况,两个磁场振幅大小不等,其合成磁场矢量的末端轨迹为一椭圆形,故名椭圆形旋转磁场。这个结论也可以推广到一般的多相(包括两相)电机。

分类

圆旋转磁场

磁感应强度矢量B的箭头末端沿圆周移动的旋转磁场。

顺时针旋转磁场:三个完全一样的线圈AX、BY、CZ在空间沿着顺时针方向彼此间隔120°,其中BY在AX之后,CZ又在BY之后(图2)。若对这三个线圈的始端A、B、C通入正序的对称三相电流,则在三个线圈的中心处O所产生的磁感应强度矢量B的模B=3/2Bmp(Bmp为每一相电流在O处产生的正弦磁感应强度的振幅),矢量B与x轴的夹角β=π-ωt。这样,随着时间的增加,磁感应强度矢量B的大小保持为3/2Bmp不变,同时以角速度ω在空间作顺时针旋转,故该磁场为顺时针旋转的圆旋转磁场。图3是该磁场中在t=0、T/4、T/2和3/4T时的磁感应强度矢量B的示意图(设A相电流iA的初相位为零)。其中周期T=2π/ω,rA0、rB0和rC0是指示方向的单位矢量,长度为1,方向则与所对应的线圈的绕行方向成右手螺旋关系。

逆时针旋转的磁场:三个线圈的始端A、B、C处通入负序的三相对称电流,则在三个线圈的中心处O的磁感应强度矢量B的模B=3Bmp/2,但矢量B与x轴的夹角β=ωt。随着时间的增加,磁感应强度矢量B的大小不变,却以角速度ω作逆时针旋转,故该磁场是逆时针旋转的圆旋转磁场。

三相电动机的正转与反转:三相电动机定子上三个线圈叫做定子绕组。将该电动机接于用户端的三相电源线上,若通入定子绕组AX、BY、CZ始端的是正序的对称三相电流,绕组电流会在电机内产生旋转磁场,使电机正转;若通入的是负序的对称三相电流,则三相电动机反转。三相电动机正常工作时一般是正转的。这样,三相电动机接到三相电源线之前,需先用相序指示器确定好三相电源线的A、B、C的相序。

椭圆旋转磁场

磁感应强度矢量B的末端移动的轨迹为椭圆的旋转磁场。当三个线圈不一样或者是通入三个线圈始端的是正序(负序)不对称三相电流,则随着时间的增加磁感应强度矢量B末端移动的轨迹为椭圆,故该磁场为椭圆旋转磁场。

产生条件

产生的基本条件:两个磁轭的几何夹角与两相激磁电流的相位差均不等于0度或180度。

应用实例

三相感应电动机:定子绕组由三相交流电源供电,转子绕组中的电流靠电磁感应产生,从而把电能变成机械能的装置。又称异步电动机。

所谓二极是指定子绕组通电后将定子铁心内壁划分为一对磁极,磁感应线发出的极面称为N极,磁感应线进入的极面称为S极。三相感应电动机主要由定子(电动机不动部分)和转子构成。定子包括铁心和绕组。定子铁心由硅钢片叠压而成,铁心内壁开槽,槽内安放定子绕组。定子绕组是定子的电路部分,由漆包铜(或铝)线绕成,是三组材料、匝数、线径、绕法、形状、大小完全相同的线圈,且空间位置互成120°,称为对称三相绕组。

由于旋转磁场的转速与电源频率有固定的关系,所以旋转磁场的转速称为同步转速。旋转方向是顺时针。说明是由电流超前的相转向电流落后的相。

当定子三相绕组通入三相对称电流后电动机内就产生一个图4所示的旋转磁场。磁场顺时针旋转就相当于转子笼条(即铸铝的铝条,笼条有很多根,图4中只画出两根a1、a2作代表)a1、a2逆时针去切割磁感应线,于是在转子笼条中产生感应电动势和感应电流其方向图4所示。由于转子电流不是靠通电而是靠感应产生,所以称为三相感应电动机。由安培定律可判断出转子笼条所受磁力方向。转子在这个电磁力矩的作用下也将顺时针转动,即转子的转向与旋转磁场的转向是一致的。转子的转速与转子转轴所带负载轻重有关,但转子的转速总要小于旋转磁场的转速,否则它将因不受电磁转矩在阻力矩作用下慢下来。因而三相感应电动机又称三相异步电动机。二极电动机中转子转速一般在2800转/分以上,与旋转磁场的转速相差很小。旋转磁场的转速用n1表示,转子的转速用n表示,则S=1-n/n1称为感应电动机的转差率。二极电动机的转差率大约在0.02~0.06之间,可见它的转子转速变化范围不大。由于转子转向与旋转磁场转向一致,而旋转磁场转向又由电流的相序决定,所以当调换两根电源线时由于电流相序的改变旋转磁场的转向就要反向,从而转子的转向也就反向。可见三相感应电动机可通过任意调换两根电源线方便地使转子转轴改变转动方向。

三相感应电动机是靠通电后转轴上带负载把电能变成机械能的装置。它有坚固耐用、价格便宜、便于维修、使用简便等优点,但它也有起动转矩不大、调速性能不好等缺点,在这方面直流电动机有明显的优越性。

本百科词条由网站注册用户【 CN100333 】编辑上传提供,当前页面所展示的词条介绍涉及宣传内容属于注册用户个人编辑行为,网站不完全保证内容信息的准确性、真实性,也不代表本站立场。 版权声明 反馈 我要认领
词条所在榜单
相关知识文章
特斯拉最伟大的十大发明 特斯拉有哪些重大发明 特斯拉的超前发明盘点
特斯拉被认为是电力商业化的重要推动者,其诸多的发明创造和专利技术,使其成为美国乃至世界最伟大的电子工程师之一,你知道特斯拉有哪些发明吗?Maigoo小编为大家带来了特斯拉最伟大的十大发明,如:交流电机、无线电、特斯拉线圈、特斯拉涡轮机、感应电动机、X射线、放大发射机等,一起来看看吧。
盘点鲁班的十大发明 鲁班最牛的发明 鲁班发明了哪些工具
鲁班是土木工匠的鼻祖,凭借一双巧手发明出许多实用工具,每一件工具的发明都是他在生产实践中试验出来的,你知道鲁班发明了什么东西吗?Maigoo小编为大家带来了鲁班的十大发明,如:刨子、锯子、曲尺、榫卯、墨斗、云梯、石磨、鲁班锁等,一起来看看吧。
盘点爱迪生十大发明 爱迪生的发明都有哪些
如果没有足够的发明和创新,今天的世界将会是一个非常沉闷和阴郁的地方。说起发明,大家肯定都知道爱迪生。本文将盘点爱迪生的十大发明,有白炽灯、留声机、唱片、电影放映机、有声电影、电影摄影机等。其中,白炽灯为最早成熟的人工电光源,它是利用灯丝通电发热的原理发光,白炽灯的发明为人类文明的发展做出了很大的贡献,给人类带来了光明。
盘点牛顿十大发现 牛顿都有过哪些发现
牛顿是17世纪人类最伟大的科学家,是人类历史上屈指可数的几个科学巨人之一,最著名的就是气发现了万有引力,那么你知道牛顿还有哪些成就吗?本文将盘点牛顿十大发现,有万有引力、牛顿力学、微积分学、牛顿冷却定律、牛顿迭代法等。牛顿在物理学、数学和天文学方面的贡献,都是划时代的。以下是详细内容,一起来看看吧。
盘点达芬奇十大旷世发明 达芬奇的那些超时代发明
达·芬奇绝不仅仅是一个画家那么简单,我们还应该注意到他是一位思想深邃、学识渊博的艺术大师、科学巨匠、哲学家、音乐家、工程师和发明家。他的发明极富创意,但其中大部分只停留在图纸上。本文将盘点达芬奇的十大超时代发明,有达芬奇机器狮子、达芬奇机器人、达芬奇机械车、达芬奇簧轮枪、达芬奇密码筒、达芬奇自行车等。以下是详细内容,一起来看看吧。
诸葛亮最厉害的十大发明 诸葛亮的发明有哪些 除了木牛流马还有这些
诸葛亮是杰出的政治家、军事家、文学家、发明家,中国传统文化中忠臣与智者的代表人物,举世闻名的全才,你知道诸葛亮发明了哪些东西吗?Maigoo小编为大家带来了诸葛亮最厉害的十大发明,如:木牛流马、八阵图、孔明灯、馒头、诸葛连弩、扎马钉、筒袖铠等,一起来看看吧。